2014年安全工程师《生产技术》考点:机械行业安全概要(10)
点击查看:2014年安全工程师《生产技术》考点:机械行业安全概要汇总
第八节 人的特性
一、人体测量
为了使各种与人有关的机械、设备、产品等能够在安全的前提下高效工作.就须实现人――机的最优结合,井使人在使用时处于安全、舒适的状态和无害、宜人的环境之中;现代设计就必须充分考虑人体的各种人机学参数。
(一)人体尺寸测量基础
人体测量所涉及的是一个特定的群体而非个人。因而选择样本必须考虑代表性的群体,测量的结果要经过数理统计处理,以反映陔群体的形态特征与差异程度。人体测量是通过测量人体各部位尺寸来确定个体之间和群体之间在人体尺寸上的差别,用必研究人的形态特征,从而为各种安全设计、工业设计和工程设计提供人体测量数据。
1.被测者姿势
(1)直立姿势。被测者挺胸直立,头部以眼耳平面定位,眼睛平视前方,肩部放松,上肢自然下垂,手伸直,手掌朝向体侧,手指轻贴大腿侧面,膝部自然伸直,左、右足后跟并拢,前端分开,使两足大致成45°夹角,体重均匀分布于两足。
(2)坐姿。被测者挺胸坐在被调节至腓骨头高度的平面上.头部以眼耳平面定位,眼睛平视前方,左右大腿大致平行,膝弯曲大致成直角,足平放在地面上,手放在大腿上。
2测量基准面
人体测量基准面的定位是由三个互相垂直的轴(铅垂轴,纵轴和横轴)来决定的。
(1)矢状面。按前后方向将人体纵切为左、右两部分的所有断面,都可称为矢状面。
(2)正中矢状面。将人体分为左、右对等的两半的断面称作正中矢状面。
(3)冠状面。通过铅垂轴和横轴的平面及与其平行的所有平面都称为冠状面。
(4)水平面。与矢状面及冠状面同时垂直的所有平面都称为水平面。水平面将人体分成上、下两部分。
(5)眼耳平面。通过左、右耳屏点及眼眶下点的水平面称为眼耳平面或法兰克福平面。
3测量方向
(1)在人体上、下方向上,将上方称为头侧端。将下方称为足侧端。
(2)在人体左、右方向上,将靠近正中矢状面的方向称为内侧,将远离正中矢状面的方向称为外侧。
(3)在四肢上,将靠近四肢附着部位的称为近位,将远离四肢附着部位的称为远位。
(4)对于上肢,将挠骨侧称为挠侧,将尺骨侧称为尺侧。
(5)对于下肢,将胫骨侧称为胫侧,将腓骨侧称为腓侧。
4支承面和衣着
立姿时站立的地面或平台以及坐姿时的椅平面应是水平的、稳固的、不可压缩的。要求被测量者裸体或穿着尽量少的内衣(例如只穿内裤和汗背心)测量.在后者情况下在测量胸围时,男性应撩起汗背心,女性应松开胸罩后进行测量。
5人体测量的主要仪器
在人体尺寸参数的测量中,所采用的人体测量仪器有:人体测高仪、人体测量用直脚规、人体测量用弯脚规、人体测量用三脚平行规、坐高椅、量足仪、角度计、软卷尺以及医用磅秤等。我国对人体尺寸测量专用仪器已制定了标准,而通用的人体测量仪器可采用一般的人体生理测量的有关仪器。
(1)人体测高仪。主要是用来测量身高、坐高、立姿和坐姿的眼高以及伸手向上所及的高度等立姿和坐姿的人体各部位高度尺寸。
(2)人体测量用直脚规。主要是用来测量两点间的直线距离,特别适宜测量距离较短的不规则部位的宽度或直径,如测量耳、脸、手、足等部位的尺寸。
(3)人体测量用弯脚规。常常用于不能直接以直尺测量的两点间距离的测量,如测量肩宽、胸厚等部位的尺寸。
(二)静态测量
1.静态测量方法
人体尺寸的静态测量属于传统的测量方法,用途根广。静态人体测量可采取不同的姿势,主要有立姿、坐姿、跪姿和卧姿等几种。制作衣服时人体尺寸的测量是常见的人体静态测量的方法,这种测量是在被测量者静态地站着或坐着的姿势下进行的。静态测量数据是动态测量的基础,是设计人机系统不可缺少的参数。
人体测量的数据是指人体不同部位的尺寸,在设计不同的设备或产品时,会涉及到人体不同部位的尺寸。不同的人给出的人体测量的定义可能略有出人。
2.影响人体测量数据的因素
(1)民族因素。
(2)性别、年龄因素。统计资料显示,男性的平均身高比女性高lOOmm。同时.人的体形也随着年龄的增长而变化,最为显著的是儿童期和青年期。一般而言.在22岁以前身高呈上升趋势,30岁以后呈下降趋势。男性在其20岁左右身体尺寸发展到最高点,女性这一点大约在17岁。随着年龄的增长,人的身高在 40岁时开始缩减,并且随年龄的增加这一过程也在加速(主要发生在脊柱)。而人的体重和某些宽度和周长尺寸却随着年龄的增长而增加。因此,在设计工作装置时,须了解所设计的工作裴置是否适合于特定的年龄组使用。在使用人体尺寸数据时。也应明确作为这些数据来源的年龄组。
(3)职业因素。从大量的劳动科学和医学调查中可知,不同职业的人在体型和人体尺寸上存在着较大的差异。由于长期的职业活动,使他们身体的某些部分得到了特别锻炼及适应而改变了体型。体力劳动者和脑力劳动者在体型和身体的某些恩寸方面就有较大的差别。除了在身高和躯干与腿的比例上有差别外.在头部、腹部、身体各部分的周长以及全身脂肪的分布上也有差别。如运动员在身体尺寸和形态上都较一般人有不同。另外,一些职业对于雇员的体型会有一些特定的要求:例如飞行员、消防队员、模特、警察等。
(三)动态测量
1.活动空间
要完成一项非常简单的任务,人体也需要某些部位运动,这就要求有足够的空间.即活动空间。人在劳动或运动时,人体空间位置与尺寸时刻在变化,这种变化是动态变化。动态测量就是测定人体动态变化时的数值。静态测量的数据.虽可解决许多产品设计问题,但人在劳动时,姿势和体位会频繁变化,就需用动态数据进行衡量。
活动空间的分配依赖于许多因素:使用的人群,任务,衣物,设备爰作业性质等。所以一般没有固定的规则或模式。例如,一名消防队员在特定宽度的通道攀梯时,就要考虑他的衣服的不同、携带设备的不同,以及通道内是否还有另外的物体.如灯、其他仪器。在不同的情境要求下,需要不同尺寸的活动空间。
2.伸展域
人在各种状况下工作时都需要有足够的活动空间。在工作中人常取站、坐、跪等作业姿势;立姿时人的活动空间不仅取决于身体的尺寸,而且也取决于保持身体平衡的微小平衡动作和肌肉。人在站立并保持脚的站立面不变时,手臂的活动空间用舒适伸展域来表示。伸展域可从立视图和平面图两个方面来看;主要有:通过肩部关节的正中矢状面的垂直部分;通过关节的横断面的水平部分;通过肩关节的沿着冠状缝平面的垂直部分。
设计人员更为关心的是人在工作时所涉及的区域;1963年Barnes提出了此种情况的正常区域和最大区域的概念。下面以前臂伸展域为例进行说明。
(1)正常区域。将上肢轻松地垂直于体侧,曲肘,以肘关节为中心,前臂和手能自由到达的区域,在该范围内,人操作时能舒适、轻快地工作,即前臂活动正常范围。正常作业范围的大小、舒适度与工作台的高度、操作者的性别、民族因素、手的活动特征和运动方向等因素有关。
(2)最大区域。例如完全伸展整个上臂所能涉及的区域。手臂向外伸直,以肩关节为中心,臂的长度(半径不包括手长)所划过的弧形轨迹在水平面上的投影。在最大作业范围内操作时,静力负荷较大,长时间处于这种状态下操作.最容易引起疲劳。
除了手的水平作业范围之外,还有脚的伟业范圈。由于脚的生理特征.其作业范围不可能很大,其作业范围是以水平方向可能移动的尺寸来确定的。脚的舒适作业范围.要根据脚的出力、动作频率、操作姿势、机械作业的形式、柞业内容等综哈分析的结果来确定。
(四)人体测量数据的运用准则
在运用人体测量数据进行设计时,应遵循以下几个准则:
1.最大最小准则。该准则要求根据具体设计目的选用最小或最大人体参数。如人体身高常用于通道和门的最小高度设计,为尽可能使所有人(99%以上)通过时不致发生撞头事件,通道和门的最小高度设计应使用高百分位身高数据;而操作力设计则应按最小操纵力准则设计。
2可调性准则。对与健康安全关系密切或减轻作业疲劳的设计应遵循可调性准则,在使用对象群体的5%一95%可调。如汽车座椅应在高度、靠背倾角、前后距离等尺度方向上可调。
3.平均准则。虽然平均这个概念在有关人使用的产品、用具设计中不太合理,但诸如门拉手高、锤子和刀的手柄等,常用平均值进行设计更合理。同理,对于肘部平放高度设计数而言,由于主要是能使手臂得到舒适的休息,故选用第50百分位数据较合理,对于中国人而育,这个高度在14―27.9cm之间。
4.使用最新人体数据准则。所有国家的人体尺度都会随着年代、社会经济的变化而不同。因此,应使用最新的人体数据进行设计。
5.地域性准则。一个国家的人体参数与地理区域分布、民族等因索有关,设计时必须考虑实际服务的区域和民族分布等因素。
6.功能修正与最小心理空间相结合准则。国家标准公布的有关人体数据是在裸体或穿单薄内衣的条件下测得的,测量时不穿鞋。而设计中所涉及的人体尺度是在穿衣服、穿鞋甚至戴帽条件下的人体尺寸。因此,考虑有关人体尺寸时,必须给衣服、鞋、帽留下适当的余量,也就是应在人体尺寸上增加适当的着装修正量。所有这些修正量总计为功能修正量。于是,产品的最小功能尺寸可由式1―8确定:
Smin =Ra+Δf(1―8)
式中Smin――最小功能尺寸;
Ra――第a百分位人体尺寸数据;
Δf――功能修正量。
功能修正量随产品不同而异,通常为正值,但有时也可能为负值。通常用实验方法求得功能修正量,但也可以通过统计数据获得。对于着装和穿鞋修正量可参照表 1―4中的数据确定。对姿势修正量的常用数据是:立姿时的身高、眼高减10 mm;坐姿时的坐高、眼高减44 mm。考虑操作功能修正量时,应以上肢前展长为依据,而上肢前屉长是后背至中指尖点的距离,因而对操作不同功能的控制器应作不同的修正。如对按钮开关可减 12 mm;对推滑板推钮、扳动扳钮开关则减25 mm。
二、人的生理特性
(一)人的感觉与感觉器官
1,视觉
1)常见的几种视觉现象
①暗适应与明适应能力。人眼对光亮度变化的顺应性,称为适应,适应有明适应和暗适应两种。暗适应是指人从光亮处进入黑暗处,开始时一切都看不见,需要经过一定时间以后才能逐渐看清被视物的轮廓。暗适应的过渡时间较长,约需要30min才能完全适应。
明适应是指人从暗处进入亮处时,能够看清视物的适应过程,这个过渡时间很短,约需1min,明适应过程即趋于完成。
人在明暗急剧变化的环境中工作,会因受适应性的限制,使视力出现短暂的下降,若频繁地出现这种情况,会产生视觉疲劳,并容易引起事故发生。为此,在需要频繁改变光亮度的场所,应采用缓和照明,避免光亮度的急剧变化。
①眩光。当人的视野中有极强的亮度对比时,由光源直射或由光滑表面的反射出的刺激或耀眼的强烈光线,称为眩光。眩光可使人眼感到不舒服,使可见度下降,并引起视力的明显下降。
眩光造成的有害影响主要有,使暗适应破坏,产生视觉后像;降低视网膜上的照度;减弱观察物体与背景的对比度;观察物体时产生模糊感觉等,这些都将影响操作者的正常作业。
3)视错觉。人在观察物体时,由于视网膜受到光线的刺激,光线不仅使神经系统产生反应,而且会在横向产生扩大范围的影响,使得视觉印象与物体的实际大小、形状存在差异,这种现象称为视错觉。视错觉是普遍存在的现象,其主要类型有形状错觉、色彩错觉及物体运动错觉等。其中常见的形状错觉有长短错觉、方向错觉、对比错觉、大小错觉、远近错觉及透视错觉等。色彩错觉有对比错觉、大小错觉、温度错觉、距离错觉及疲劳错觉等。
在工程设计时,为使设计达到预期的效果,应考虑视错觉的影响。
(二)视觉损伤与视觉疲劳
①视觉损伤。在生产过程中,除切屑颗粒、火花、飞沫、热气流、烟雾、化学物质等有形物质会造成对眼的伤害之外,强光或有害光也会造成对眼的伤害。
眼睛能承受的可见光的最大亮度值约为106cd/m2。如越过此值,人眼视网膜就会受到损伤。300m以下的短波紫外线可引起紫外线眼炎。紫外线照射 4~5h后眼睛便会充血,l0~12h后会使眼睛剧痛而不能睁眼,这一般是暂时性症状,大多可以治愈。常受红外线照射可引起白内障。直视高亮度光源<如激光、太阳光等,会引起黄斑烧伤,有可能造成无法恢复的视力减退。低照度或低质量的光环境,会引起各种眼的折光缺陷或提早形成老花。眩光或照度剧烈而频繁变化的光可引起视觉机能的降低。
②视觉疲劳。长期从事近距离工作和精细作业的工作者,由于长时间看近物或细小物体,睫状肌必须持续地收缩以增加晶状体的白度。这将引起视觉疲劳,甚至导致睫状肌萎缩,使其调节能力降低。
长期在劣质光照环境下工作,会引起眼睛局部疲劳和全身性疲劳。全身性疲劳表现为疲倦、食欲下降、肩上肌肉僵硬发麻等自律神经失调症状;眼部疲劳表现为眼痛、头痛、视力下降等症状。此外,作为眼睛调节筋的睫状肌的疲劳,还可能形成近视。
3)视觉的运动规律
人们在观察物体时,视线的移动对看清和看准物体有一定规律。掌握这些规律,有利于在工程设计中满足人机工程学的设计要求。
①眼睛的水平运动比垂直运动快,即先看到水平方向的东西,后看到垂直方向的东西。所以,一般机器的外形常设计成横向长方形。
②视线运动的顺序习惯于从左到右,从上到下,顺时针进行。
③对物体尺寸和比例的估计,水平方向比垂直方向准确、迅速,且不易疲劳。
④当眼睛偏离视中心时,在偏离距离相同的情况下,观察率优先的顺序是左上、右上、左下、右下。
⑤在视线突然转移的过程中,约有3%的视觉能看清目标,其余97%的视觉都是不真实的,所以在工作时,不应有突然转移视线的要求,否则会降低视觉的准确性。如需要人的视线突然转动时,也应要求慢一些才能引起视觉注意。为此,应给出一定标志,如利用箭头或颜色预先引起人的注意,以便把视线转移放慢。或者采用有节奏的结构。
⑥对于运动的目标,只有当角速度大于l’/s~2’/s时,且双眼的焦点同时集中在同一个目标上,才能鉴别出其运动状态。
⑦人眼看一个目标要得到视觉印象,最短的注视时间为0.07~0.3s,这里与照明的亮度有关。人眼视觉的暂停时间平均需要0.17s。
2.听觉
听觉的功能有分辨声音的高低和强弱,还可以判断环境中声源的方向和远近。
1)听觉特性
(1)听觉绝对阈限。听觉的绝对阈限是人的听觉系统感受到最弱声音和痛觉声音的强度。它与频率和声压有关。在阈限以外的声音,人耳感受性降低,以至不能产生听觉。声波刺激作用的时间对听觉阈值有重要的影响,一般识别声音所需要的最短持续时间为20~50 ms。
听觉的绝对阈限包括频率阈限、声压阈限和声强阈限。声强是指在垂直于声波传播方向上,单位时间内通过单位面积的平均声能,单位为W/m2。频率为20Hz、声压为2×10-5Pa、声强为10-12w/m2的为听阈。低于这些值的声音不能产生听觉。
(2)听觉的辨别阈限。人耳具有区分不同频率和不同强度声音的能力。辨别阈限是指听觉系统能分辨出两个声音的最小差异。辨别阈限与声音的频率和强度都有关系。入耳对频率的感觉最灵敏,常常能感觉出频率微小的变化,而对强度的感觉次之,不如对频率的感觉灵敏。不过二者都是在低频、低强度时,辨别阈值较高。
(3)辨别声音的方向和距离。在正常情况下,人的两耳的听力是一致的。因此,根据声音到达两耳的强度和时间先后之差可以判断声源的方向。例如,声源在右侧时,距左耳稍远,声波到达左耳所需时间就稍长。声源与两耳间的距离每相差1cm,传播时间就相差0.029ms。这个时间差足以给判断声源的方位提供有效的信息。另外,由于头部的屏蔽作用及距离之差会使两耳感受到声强的差别,因此,同样可以判断声源的方位。以上这两种判断方法,只有声源恰好在听者的左方或右方时,才能确切判断声源的方位。如果声源在听者的上、下方或前、后方,就较难确定其方位。这时通过转达头部,以获得较明显的时差及声强差,加之头部转过的角度可判断其方位,在危险情况下,除了听到警戒声之外,如能识别出声源的方向,往往会避免事故的发生。判断声源的距离主要依靠声压和主观经验。一般在自由空间,距离每增加一倍,声压级将减少6dB(A)。
2)听觉的掩蔽
当几种声强不同的声音传到人耳时,只能听到最强的声音,而较弱的声音就听不到了,即弱声被掩盖了。一个声音被其他声音的干扰而听觉发生困难,只有提高该声音的强度才能产生听觉,这种现象称为听觉的掩蔽。被掩蔽声音的听阈提高的现象,称为掩蔽效应。
人的感觉反应人们在操纵机械或观察识别事物时,从开始操纵、观察、识别到采取动作,存在一个感知时间过程,即存在一段反应时间。
1)反应时间
反应时间是指人从机器或外界获得信息,经过大脑加工分析发出指令到运动器官开始执行动作所需的时间。反应时间是从包括感觉反应时间(从信息开始刺激到感觉器官有感觉所用时间)到开始动作所用时间(信息加工、决策、发令开始执行所用时间)的总和。
由于人的生理心理因素的限制,人对刺激的反应速度是有限的。一般条件下,反应时间约为0.1~0.5s。对于复杂的选择性反应时间达l~3s,要进行复杂判断和认识的反应时间平均达3~5s,具体的带有判别的反应时间t可用下式求得:
t=klog2(n+1) (1―10)
式中,k为常数;n为等概率出现的选择对象数;(n十1)是考虑判明是否出现刺激。为了保证安全作业,一方面在机器设计中,应使操纵速度低于人的反应速度。另一方面应设法提高人的反应速度。
2)减少反应时间的途径
―般来说,机器设备的情况、信息的强弱和信息状况等外界条件是影响反映时间的重要因素;而机器的外观造型和操纵机构是否适宜于人的操作要求,以及操作者的生物力学特性等,则是直接影响动作时间的重要因素。
(1)合理地选择感知类型。比较各类感觉的反应时间,发现听觉和知觉反应时间最短,约0.1~0.2s,其次是触觉和视觉。所以在设计各类机器时,应根据操纵控制情况,合理选择感觉通道,尽量选用反应时间短的通道去控制和调节机器。
(2)适应人的生理心理要求,按人机工程学原则设计机器。
(3)操作者操作技术的熟练程度直接影响反应速度,应通过训练来提高入的反应速度。
编辑推荐:
最新资讯
- 2025年中级注册安全工程师考前急救!各科考前三页纸免费下载2025-10-13
- 2025年中级注册安全工程师《安全生产法律法规》第六章29个重要考点,分值25-34分2025-10-13
- 2025年中级注册安全工程师《安全生产法律法规》第五章28个重要考点,分值9-14分2025-09-28
- 干货预警!2025年中级注册安全工程师《管理》7个核心考点解析2025-09-28
- 2025年中级注册安全工程师《技术基础》考前急救锦囊:15个考点助力拿分2025-09-28
- 2025年中级注册安全工程师《技术基础》28个核心考点,考前突击必看2025-09-23
- 备考冲刺!中级注册安全工程师管理科目速记口诀,适配2025年考试重点2025-09-19
- 2025年中级注册安全工程师《安全生产法律法规》第四章23个重要考点,分值6-10分2025-09-19
- 干货来袭!注安法规数字汇总,考试提分就靠它2025-09-15
- 别错过!注安技术速记口诀适配2025年考试重点2025-09-15

